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RIGIDITY IN THE ELASTOPLASTIC TORSION OF SIMPLE RODS* 

M.IA. LBONOV and V.D. PERBDBRII 

Prismatic rods for which the trajectories of tangential stresses under 
elastic deformation are close to the known trajectories of these stresses 
in the limiting case of perfect plasticity, are considered. Attention is 
given to the study of the rigidity of the elastoplastic torsion in the case 
of perfect plasticity. 

The problem of the pure torsion of prismatic inelastic rods occupies a special place 
among the boundary value problems of mechanics of continuous media, even though it is the 
simplest of its class; if we exclude the case in which the yield drop is present /l/, thenthe 
torsion will not be accompanied by relief of stress; the limiting case of perfectly plastic 
torsion is statically determinable and can be studied using elementary methods. The appear- 
ance of partial plastic deformation formally complicates the problem /2/. However, it is 
usually the values of the deformation that are of practical interest and not the stresses. It 
is the deformationsthatoften set a limit to the admissible loads. It is clear that in this 
context the torsional rigidity is of overriding interset. It can be determined very accurate11 
in an indirect manner, by passing the solution of the partial differential equation at the 
unknown elastoplastic boundary. The elastic torsion of thin-walled and cylindrical rods when 
there are no stress concentration foci is investigated in a fairly simple manner in /3/. 
Plastic deformation reduces the sharpness of the stress concentration and thus widens the 
range of applicability of the simplified methods of solving elastoplastic problems more effic- 
iently, the higher the level of plastic deformations as compared with elastic deformations. 
At the centre of the proposed simplification lies the idea of determining the tangentialstress 
trajectories at the periphery of the transverse cross-section in the region of maximum load 
for elastic as well as the plastic materials ; on the contour itself they are identical by 
virtue of the boundary conditions (the contouris always a trajectory of tangential stresses). 
The greatest difference between the trajectories under elastic and plastic deformations will 
occur in the case of perfect plasticity. Nevertheless, the error in determining the torsional 
rigidity when the actual tangential stress trajectories in the elastic stage are replaced by 
the trajectories for a perfectly plastic material is practically nil for all singly connected 
rods with a convex contour, and when parts of the contour are indented with the radius of 
curvature of the indentations exceeding the distance to the nearest point of the branch of the 
contour lying opposite /3/. The magnitude of this error represents "the measure of simplicty" 
of the rodundertorsion, and the upperlimitoftheerrorwhen determining the torsional rigidity 
of the inealstic rods. The more plastic the material (i.e. the greater the plastic deforma- 
tions), the smaller the error in determining the torsional rigidity; in the limiting case of 
infinitely large deformations without reinforcement it tends to zero. The present paper deals 
with the case of linear reinforcement, but the computations are carried out for perfectplastic 
ity. 
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1. Pure torsion corresponds to the case when the transverse cross-sections rotate in 
their planes as rigid figures about the longitudinal Oz-axis by the angle 0, and there are 
longitudinal displacements w(z,Y). Let us find the components of the deformation tensor in 
a rectangular system of coordinates (l,n,z) under the conditions given above, at any point 

(27 Y) 
ylr = awial + 8HI (x, y), yTlr = aluihz + BH, (5, y) (1.1) 

Here HI (2, Y) is the distance between the centre of rotation (from the oz-axis) and ray I 
emerging from the point (Z,Y), and H,(s,Y) is defined in exactly the same manner. 

Let us determine the circulation of the deformation tensor components (v) along the contour 
ABDE (Fig.1). We have 

1 ys ds = 2bABDE 
ABDE 

where ABDE is a closed contour belonging to the transverse cross section and aI(sDE is the 
area bounded by this contour. Taking into account the fact that the above contour is formed 
by~eelementsoftangentialstresstrajectories(~~,~E) andelements of the lines OrthOgOnal to 

them, we can write the last equation in the form 

YAB*AB - YDE.DE = BOO-DE 

Here we express the shear deformations in terms of the stresses beyond the elastic limit (7~ 
is the torsional yield point, G is the shear modulus and G' is the corresponding tangential 
modulus). Here we find that 

y = 5&,+ (T - TT)/G’ (1.2) 

Here we find that 

TAB*AB - TDE*DE + (AB - DE)(G’ - G) TT/G = 2G’8~0.dsrJ~ 
Using the notation 

we obtain 

Fig.1 

TO = T + (G’- G)T~/G = G’y (1.3) 

&AB - &DE = 2G’fhABDE (1.4) 

We will place every point of the contour of the transverse 
cross section of the rod into correspondence with a circle 
touching the contour at the given point and contained complet- 
ely within the transverse cross section, with the largest 
radius equal to (6/2) . We shall call the segments of the 
straight lines connecting the centre of this circle with the 
points on the contour which the circle touches, the conjugated 
normals. The position of the point B' (Fig.1) can be found 
if the normal on which the point lies is known, as well as 
the distance u to the contour line (O,<:u<6/2). 

We will define the position of the normal by the length 
of the contour segment (L) contained between some fixed point 
and the normal in question. We will assume, to be specific, 
that the positive direction of the curvilinear coordinate L 
is the one for which the passage around the contour of trans- 
verse cross section is such that th& area of the cross section 
always lies to the right, and the coordinate u is reckoned in 
the direction of the inner normal to the contour line. 

We will assume that the normals in question are suffic- 
iently close to the lines orthogonal to the trajectories of 
tangential stresses (in the case of perfect plasticity the 
lines coincide) 

~“(u)?dL-~+“(u+du)‘~-;-~= dL=:2G’O ‘- p u--tldu dLdu (1.5) 

where p is the radius of curvature of the element dL(p is assumed positive for the convex 
part of the contour), O<q < 1. The last equation yields 

a+ 1 
dL1- 

_+3=-226'0 
P-U 

The general solution of this equation has the form 

ro=*++G'8(p--u), c=const 
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Using the notation (1.3) we obtain 

(1.6) 

where c is the constant of integration obtained from the condition of coupling between the 
elastic and plastic zone ( uG is the coordinate of the elastoplastic boundary) 

r(L, u)I,=,P=TT (1.7) 

As a result, we write the general solution in the form 

T=Tr 1-g. ( 
C’ p-Ilo G p_-u )+;ce (P--.)‘r-(P-e’ 

P--rr 
(1.8) 

Putting G’ = G in (1.6) we obtain the equation characterising the stress field in the elastic 
kernel 

T =& +Ge(p- u) 

Expressing the constants in terms of the 'stress r(L, 612) which we shall denote by r,, we 
obtain (here and henceforth the upper sign is taken in the case when the previously chosen 
directions of the contour stress r(L, 0) and the stress 'c, coincide) 

2=+zc -$++GB[p _ 1L (P - W’ 
P--u I 

(1.9) 

We will call the following expression the Prandtl function (the flux of tangential stresses): 

n (u) = jT* du, O,<U<&” 
(1.10) 

0 

rI(u)=&*du+ j r,du, u"<u< s/2 
0 “0 

where r, and TV denote the stresses in the plastic and elastic zone, given by (1.8) and (1.9), 
respectively. By requiring that the Prandtl function be continuous at the point with coordin- 
ate u = 612, we obtain 

(1.11) 

where u" and U+' are the coordinates of the points of intersection of the elastoplastic bound- 
ary with the conjugated normals. 

Expressions (1.8). and (1.9) together with conditions of continuity (1.11) and (1.7), form 
a closed system of equations which yields the functions z (L,6/2) and no(L), and these in turn 
define the Prandtl function. The moment of the internal forces is found from the formula(F 
is the areaof transverse cross section) 

m 

Fig.2 

M=2SSlI(L,u)dF 
(F) 

(1.12) 

2. In the case of perfect plasticity the 
maximum tangential stress is equal to the yield 
point (r,, =rr) everywhere in the plastic zone, 
and directed perpendicular to the normals of 
the contour line. The stress field in the 
elastic nucleus is found from (1.9). The 
Prandtl function in this case takes the form 

l-I (u) = TTU, 0 < u < u" (2.1) 

n(u)=rZuO+ jr,&, u='<u<(:/2 
"0 

Expression (1.121, taking (2.1) into account, 
determines the perfectly elastic plastic tors- 
ional moment for the given twist. When the 
plastic zone has spread over the whole area of 
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the transverse cross section, the torsional moment takes its limiting value 

(2.2) 

The relation connecting the torsional moment M with the twist 8 (M, and 8, are limitingvalues 
of the corresponding quantities, and K is the torsional rigidity within the elastic limits) 

is shown in Fig-Z. The dashed lines show the values of m(q) for the rectangular cross sect. 
ions, with numbers accompanying the lines describing the ratios of the sides. The half-moons 
correspond to the Weber profile shown in the same figure. The smail circles show the results 
for the corresponding cross sections with a ratio of the internal to external radii equal to 
0.9, and the dark circles refer to the values of m for rods of circular transverse cross sect- 
ion. 

The computations show that the curves determining the relationship m(m) are contained 
within the zone shown in Fig.2 with thick lines. When the twist 8 is increased, the plastic 
zones in which the assumptions made hold exactly, also increase and the magnitude of the tor- 
sional moment tends to its exact value (2.2). 

we note that the largest error in determining the torsionalmomentusingthe formulas given 
occurs at the yield point. Comparing the values of M, with the known exact solutions we find 
that the maximum error is small in the case of simple rods. For prismatic rods of elliptical 
and rectangular cross section the error does not exceed 3% and 5%, respectively, and for the 
Weber profile (Fig.2) 1.5%. We note that the torsional moment of a rod of rectangular cross 
section is determined in /4/ using a more complicated method, yet achieving the same accuracy 
as in the present paper for a ratio of the sides equal to 0.2 and 0.4. In /5/ the results 
for a square transverse cross section fall below the limit curve and cannot therefore be re- 
garded as possible. 

REFERENCES 

1. LEONOV M.IA. and SHVAIKO N.IU., Introduction to the dislocation theory of elastoplastic 
torsion. In: Problems of the Mechanics of Continuous Media, Moscow, Iz-vo Akad. Nauk 
SSSR, 1961. 

2. GALIN L.A., Elastoplastic torsion of prismatic bars of polygonal cross section. PMM Vol.8, 
No.4, 1944. 

3. LEONOV M.IA., Fundamentals of the Mechanics of a Rigid Body. Frunze, Izd-vo Akad. Nauk 
KirSSR, 1963. 

4. ANNIN B.D. and SADCVSKII V-M., Elastoplastic torsion of a rod of rectangular cross section. 
Izv. Akad. Nauk SSSR, MIT, No.5, 1981. 

5. BANICHUK N.B., Analysis of elastoplastic torsion of rods by the method of local variations. 
Inzh. zh. MTT, No.1, 1967. 

Translated by L.K. 

PMM U.S.S.R.,Vo1.47,No.6,pp.820-827,1983 
Printed in Great Britain 

0021-8928/83 $lO.oO+O.OO 
01985 Pergamon Press Ltd. 
UDC 539.374 

EXTENSION OF THE VARIATIONAL ffORMULATION OF THE PROBLEM FOR A RIGID-PLASTIC 
MEDIUM TO VELOCITY FIELDS WITH SLIP-TYPE DISCONTINUITIES* 

G.A. SEREGIN 

Sets of velocity fields containing slip-type discontinuities at the 
boundary of the rigid-plastic medium, as well as within it, and the 
functionals defined on these sets, are described. It is shown that 
the exact lower bounds of the variational problems for these functional9 
are equal to the coefficient of the critical load. The minimax 
problemwith saddle point constructed here is regarded as an extension of 
the classical minimax problem of the theory of critical loads. 
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